An effective hybrid of hill climbing and genetic algorithm for 2D triangular protein structure prediction
نویسندگان
چکیده
منابع مشابه
Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملWhen a genetic algorithm outperforms hill-climbing
A toy optimisation problem is introduced which consists of a ÿtness gradient broken up by a series of hurdles. The performance of a hill-climber and a stochastic hill-climber are computed. These are compared with the empirically observed performance of a genetic algorithm (GA) with and without. The hill-climber with a suuciently large neighbourhood outperforms the stochastic hill-climber, but i...
متن کاملConvergence of a Hill Climbing Genetic Algorithm for Graph Matching
This paper presents a convergence analysis for the problem of consistent labelling using genetic search. The work builds on a recent empirical study of graph matching where we showed that a Bayesian consistency measure could be e$ciently optimised using a hybrid genetic search procedure which incorporated a hill-climbing step. In the present study we return to the algorithm and provide some the...
متن کاملcomparison of genetic and hill climbing algorithms to improve an artificial neural networks model for water consumption prediction
no unique method has been so far specified for determining the number of neurons in hidden layers of multi-layer perceptron (mlp) neural networks used for prediction. the present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. the data used in the present research for prediction are consumption data of water...
متن کاملIntegrated Genetic Algorithm with Hill Climbing for Bandwidth Minimization Problem
In this paper, we propose an integrated Genetic Algorithm with Hill Climbing to solve the matrix bandwidth minimization problem, which is to reduce bandwidth by permuting rows and columns resulting in the nonzero elements residing in a band as close as possible to the diagonal. Experiments show that this approach achieves the best solution quality when compared with the GPS [1] algorithm, Tabu ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proteome Science
سال: 2011
ISSN: 1477-5956
DOI: 10.1186/1477-5956-9-s1-s19